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THE CRITICAL INCLINATION PROBLEM IN

SATELLITE ORBIT THEORY

By WILLIAM A.._[ERSMAN

SUMMARY

S(,lutions oJ the satellite orbit problem are obtail_ed
that do m,t exhibit singularitie._ at the critical incli-

nation angle. Serie,_ repre._eldation,_ are obtained,

their region._ o.f convergence are exhibited, and

qua_titatS'e mea._ure._ (_ lheir ._peeds of con_,ergence
are proNded for _lse in numerical computation.q.

INTRODUCTION

The first attempts to develop a tl/eory of
satellite orbits about an oblate planet (refs.

1, 2, 3) produced solutions containing a singulnrity
at. the "critical inclination angle," arc tan 2.

The singularity occurs only in the long-period
terms of the solulion and can be removed if

these terms are isolated and treated by special

methods (rds. 4, 5, 6).

If only the "main problem" (ref. 1) is considered,
in which the series for the planet's gravitational

potential is truncated at the second harmonic,

the principal results are that the apsi(hd motion
is purely oscillatory when the inclimgion angle

lies within a cerlain region (the Ill)ration region)

cent ered at the eritical wdue ; pericenter oseillat es

about the node and never reaches the points or
maximum deelimttion. When the inclination

angle lies outside the libvation region, the apsidal
motion is essentially secular with small oscilla-

tions superimposed (vel's. 1, 2, 3). On the bound-

ary between lhese two regions the apsidal motion
is aperiodic, and pericenter approaches the point

of maximum de¢'limltion asymptotically.
Extension of the series representation of the

gravitatiomd potential to include the fourth

harmonic merely shifts the stable position of

pericenter, in the libvalion region, from the node

lo the point of maximmn declinalion.

These well-known results, for the main problem,

are obtained here by a new method, based on the
intermediate orbit of rererence 7. The use of the

intermediate orbit rather lhan the osculating

ellil)se as a point of departure has certain attrac-

tive features that lead to nmthematical simplifica-

tion and improvement. The simplification con-

sists of introducing a parameter that is a general-

ization of elliptical eccentricity, 1)ut which is a
constant for the intermediate orbit. This elimi-

nates troul)lesome apparenl singulariiies for
nearly circular orbits.

The improven-tent consists of presenting the

solution in the form of infinite series, the first-

term representing the previously pul)lished solu-

lions, and of delermining precisely the regions or

convergence. Furtlmrmore, precise measures of

ltm speeds of convergence are obtained, so thal

truncation rot' numerical purposes can be effected
with full error control.

a

b

X0

C

eo

E,;r¢
I

J

or

Ic, k,

o()
P

TABLE OF IMPORTANT SYMBOLS

parameters involving inclination angle,

eccentricity, and oblateness param-
eter

COS f

eccentricity

co]nl>lete ellil)tie integrals

inclination angh'

Or

p2

aeffreys' el>lateness constant

coeffwients in series of ellit>tie functions

modulus of elliptic function

order or magT|itude

semilatus reet uln, dimensionless

1
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P0, Pc, pn

q
8

t

v

Is

tO t

OJ n

.q

0

1

¢

8

O ! !#

J ,

eonjugale momenla in canonical equa-
t ions, dimensionless

perigee dislanee, dimensionless
sin ]

iinie, dimensionless

true anmnaly
ar_lment of latit ude

convergence parameter, lne,qsllre of

speed of convergence

geocentric distance, dimensionless

dimensionless variabh, mensuring de-

viation of inclination angle or perigee
distance from its initial wdue

coeffwicnts in Fourier series for

argument of pericenter

dr' apsidal velocity

teeN.denis in Fourier series for _o

right ascension or ascending node

SUBSCRIPTS

inil ial eondit ions

nlod u|us ]q

values al convergence bound_/r}-

values lit sopai'atrix

si;pmlscRn, Ts

degrees, minutes, seeonds of arc
periodic compo,ent

BINOMIAL COEFFICIENTS

(D ;'7,'!(j -- k ) !

EQUATIONS OF MOTION

CANONICAL COORDINATES

pa component of angular nlonlen{tliil

ilie I)Iillle['s polar axis

t time

along

Corresponding to equalions (8) of reference 7, the

canonical equalions, in lhe absence of dissipative
t'orees, are

dx_ 5]-[ dy_ OH
dt--_y<' T_------ _,,. (])

where x_ represents any of the eoordinutes (p, _,,

-(2) and y_ the eonjugale monwntum (Po, Pc, pa).
The llalniltonian, H, is defined by

lI-_po_+_(t_)_---_--S(o,_,P.,I) (2)

where S is the disiul'lmnce function, and the ineli-

nalion angle, [, is given by

cos i=_ (3)
P_

For the main pvoblem of artificiM satoIlite

theory the distul'tmnee function is (eq. (10) ot

ref. 7)

--sin- I sil?
p3

dt 1 1° I 2

whol'e

(4)

c_eos I

s=Siil I

and Jis Jeffrevs' constant for the o|)lateness. Its

numerical value for Ealih is 0.00162392 (ref. 8,
p. 17, with J l.SJ.,).

It has 1)ten shown in reference 7 that the prot,lem
Of artificial satellite niotion ('all t)e dcs(.ribed in

dimensionless, eanoni('al form as follows, l,et R,

the equatorial radius of the planet, be taken as the

unit of length, and _/G,1I as lhe unit of time.

Then ill(' folh)wing dimensionless varilthles con-

stitute a canonical set (see fig. 1):

REDUCTION TO TWO DIMENSIONS

Whelicver i}le disturt)an('e function possesses

axial synll/ictry, the prot)lem (,an be reduced

essentially to two dimensions as follows. Axial

synllllet ry ilnplies

&q'_-,9

p radial distance

,p arguinent of latitude

fl right ascension of tile ascending node

pp radial velo(.ity

]7_p I111 glllliI" rnotllgrl _ (111t

Ilon(,( b the motion of the node is given by

pf_ :eOilS[ i,lll{ l

dg. 1 _3S _"

,ee p_ sin [Ol j
I

(.5)
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North

t

!

pole

FICVRI _; 1.--Coordinate system;

The remaini||g canonical equations become

dp dp_ p_ I + bS 1

a-o" p,, ?z' itT=57

(G)

This set of equations is sdf-('ontained, since t2
does not enter it, and p_._is constant. Once it has
been solved, the motion of lhe node can be ob-
tained di,'e('tly from eqmdion (5) by quadrature.

It is also convenient lo introdu(.e a new indepeu(l-
ent vari_t)l(, in pl,'e of the lime, t. Even in the
('htssi('d, two-body i)rol)lem su('l_ a irnnsform4ion

is (:us[onlarY.

ence 7, define an auxilhry angle, 0, 1)y

,10 d_, dS2
_=_± di,,os Z='_

p-

with tlle iniGd condition

p,=O when 0=.0

Tim no(bd oq_v_lioJ_ now becomes

d-q 02( 1 )b.S'd-o-=p,_--_ .si,7! ol

Following the procedure of refer-

(T)

(S)

f
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The time equation becomes

d._[t=p: (9)
dO p_

at,(l the two-tlimensional probhqn becomes

dp p2pp dpo p,, 1 . p2 5N 1' -t ap

)d_e p2 cot [ 5S dp_, p_- 5_%'

(l--}-I p2 hi' dO p_ 04,

(lO)

Equations (8) and (9) for _ and t will not be

considered further in this report. The essential

nature of their solution has been adequately dis-

cussed in reference 7 (eqs. (64) and (72)).

INTRODUCTION OF TRUE ANOI_IALY AS INDEPENDENT
VARIABLE

Introducing the dislut'bance function S from

equation (4) _ves the two-dimensional prob]ein

dp__o2po "_

dO p_

dO p P_ p,,v"I,2 -_c-2'_e°s2¢

" " "i (11)

d_ 1
__ j C-p_ (1-- cos 2,0)

dp¢ - s"
(10 =--d PeP sin 2¢

Now introduce the true anoInaly, r, as irate-

pendent variable, .rod the quantities [, I, _, coas

dependent variables, defined as follows:

where

17= p_
P

V--:p,p_

__ Po __ C2 __'%z-- 8_
(12)

und the sul)script 0 denotes initial wdues taken at

any specific perigee. Note that the symbol ( has
a different meaning here than in reference 7. The

true anomaly _ will be regarded temporarily as an

arbitrary function of 0, subject only to the initial
conditions:

0=0 1

U=I@ I('o

V=0

_--0 when r=0 (13)

p--po

_-- O)0

I--Io

The definilion of v will be COml)leled in the next
section.

This transformation is motivated by the fact

thai, when J-0, the solution is

v=O

U--I -?eo cos r

Y=e. sin c

_=0

[0 = 500

P--Po

I= 1o

when J=O

Thus the eonslanls % coo, p°, Iu m'e the usu'fl

osculating elliptical values of eccentricity, argu-

ment of pericen{er, semilatus rectum, and inclina-

tion angle, evaluated at an arbitrary, specific

perieenter chosen us the epoch.

The equations of motion now become

d_ " 2 " 9 dO
i_--2,,.s _ (l+_) sin .¢ ,7/

&o 1+[1 +jdU(1-eos 2_)1 &./tt"

_ .do 04)
rig'=dr(--V--2J":=U2 sin "Ao)Or

,/v
gl-:--l +_ iU2(1--3c'--3.," cos 2<)

,lv L ' "

]110--.].,'q'U sin 2s_
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where
,,%

. J J (1+_),./

c2=c°'(1 +_) I
32 = ._'02 -- C02_

¢--v _-w

(15)

An approximate sohttion of lllese equations,
accurate t.o O(J2), will be obtained by an iterative

procedure. At. tile first step, the ternls containing

_p explicitly in the equations for (, (, and V will
be neglected. Tile true anomaly, v, can then be

defined in such a way that U and I, 'rod hence

p and do/dr, contain no secular terms (see ref. 7).

This approximate solution for U can then be

inserted in the complete equations for _ and _,,
which can be solved by neglecting the short-

period terms. The solution obtained in this way
contains all the essentitd features of the orbit as

regards the motion of pericenter, and constitutes

the objective of the present report. ]n principle,
the iterative procedure couht be eontimwd, by

inserting the solution for $ and _0 back into the

eomplete equations for U, t, etc. While this has

not been done, it seems pl'msible a priori l]mt the
net effect, of such iterations wouhl be to introduce

shot't-period terms which would have no essential
effect on the qualitative nature of the motion.

THE INTERMEDIATE ORBIT

Following the procedure outlined in the pre-

ceding section, define the intermediate orbit as the

solution of the simplified set of equations

w}tel'e

dU dO

do dc

= (U- _.o,dO

(16)

(17)

The first equation gives _=0, and hence, p, s, c, ,r,
and I are constants for the intermediate orbit.

Equations (16) for U and V are equiwdent to

the first, fou,.th, and fifth or equations (12) of

reference 7; that is, the intermediate orbit here is
identical to tim t.of reference 7. It will be rederived

here by the following, simpler procedure, which is

sufficient for the present restricted probleln.

Multiplying the V equation by 21, tlm U equa-

tion by 2U, adding and integrating yMils the

ener_- integTal

V2--2U@U 2-2 _Ua=rt=eonstang (1S)

where '1 is obtainable from the initial conditions:

2 a(1 +e0) a (19)
r/= e02-- 1 --_

It. was shown in reference 7, equations (53),

(54), (58), that the true anomaly, v, can be de-

fined as a fun('tion of 0 by means of dliptic func-

tions in such a way that p and doflt contain no

secular terms. A more appropriate form of the

solution for the present purpose, that avoids the

use o1" elliptic functions, is:

_7= HO-}-H 1 COS t"

dO -_]
dr _;1 --thU (20)

V =-- -..=-== Sill

dr dO (f

where u0, ua, f, kt are constants, determined as

follows: Insert equations (20) in the energy inte-

gral, rearrange as a cubic polynomial in U, and

equate the coefficients to zero. The resulting

equations can be transformed, by means of the
initial condition

_'o@_/1= | -_-eo (21)

into

4 ( , )".f = 1+:j _.1_- 1+5 _"-(

Uo--.f (t +_ k,_)

Ul= 1 ,4-eo--Uo

(22)

/
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Since Iz[<IJi<<l, the equation for f can be

solved by the obvious iterative procedure 1o any
desir('<l accuracy. Finally, if the radical -(]--k,U

is exp.mded t_y the binomial ttieorem and rear-

ranged as a Fourier series, lhe solution can be
written in the form

U=uo_ u_ cos #_ "_

1
0= ro,:q-_ n v,, sin 'nv (23)

qt=l

/

V=5 V,, sin m, /
g=l ,.#

wiiere, to 0(a-_), tile eoefficienls ara

_o 1q-_ (lq-_ e,2)-t -_2

,o+ 5 eel- 6 co:;)

_t-- e0-- o (1 -t-._ ej)-- _r2

Co+5 e,,-ca

5 5
v0= 1@ _-c_-' (_+ 12 co-") • • •

1 1 1
vl=_ eoa+a2 (--73+eo--g 9 eo') " " "

1 (2,1)

r2=12 e°:a2 " " "

_.,n--O(o "n) . . .

(1 q--56co-}-1 eo2-t--:- co:') .-"

l _ 1 eoa) ' I I

. 1
I_'_=--_ e0_ _ . . .

V.==O(_"-')

It. may be remarked that this procedure can be

generalized. If higher harmonics are to be in-

eluded in the phlnei's gravitational potential, it is

merely necessary to add two powers of U lo the

AERONAUTICS AND SPACE ADMINISTRATION

radicand (eq. (20)) for each even-ordered harmonic.

Simil.trly, the seeuhtr effects of lunar and solar

perturbations can be handled by adding negative
powers of U to the radicand. ]n every ease the

number of constants (uo, 'u_, f, etc.) is one gq'eater

than the de_'ee of the energy integl'al, considered

as a polynondnI in U, so that the procedure is

determinate. Tt,e procedure of reference 7 can-

not be generalized so easily.

While equation (23) for 0 in terms of _"eouhl be
inverted to exhibit _' explicitly as a function of 0,

such a procedure eouhl serve no useful purpose

here. All that is needed is dO/&, as a function of

v, since this is the quantity that occurs in all the

differential equations. Ullimntely every quantity

of physical inleres{ e'm be expressed explicitly

as a function of .r, so thai it can be regaMed as a

prime independent variable whose physical sig-
nificance is of no real concern.

THE APSIDM, EQUATIONS

If the solution for the inlerniediale orbit is

substituted in the general equations (14), tim

equations for 8 and _o become, to 0(J2):

-_ (4xJ--1){) sin (2c-}-2@

+.;0{,:-E.+.0(- 1 ,0-D]

J

[sin (t'472@ +sin (3c+2w)]

+ijl j,_%e0Z%2[sin 2wq- sin (4c--'2c0)_. t _-)

and

(ho 1
(h-5= _ jo (5Co'-- 1) + j,,zo

5 5 l, 2<oT<0 <J
9

3
cos v-- 2 eeoc2 cos (c+2co)

-- 3cj eos (2,, + 2w)--3 co'eo cos (3r + 2@ ]
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] " 2w
] 2 '](_c%6°2C°2 COS

1 1 2'
--= +e0--_i eo

cOS r-l-1 1 e02_o 2 eo_ 2v

(E (°1)3+j,,c,? -1-O-o -+:_ e,? _ cos (2r-t-2_o)

+Eeo+ °o (- 1+_ e0-_ <?)]

[cos t:-- 5 cos (v+2w)

--2 cos (3r+2 d) + _oeo_cos2o

12 <<°2 cos (4v+2_o) (2(;)

whore

J" p(?

J

and tilt, initial conditions are

_=o l

a_=_oo_ wl)cn v=O (2g)

Although these equations appear quite for-

midabh,, it is possible to simplify them without
sacrificing any of the essential features o1' their

solution. Tlms, begin by obtaining lhe solution

of the _ equalion, accurate to O(J), with o_ being

h'ealcd as a. constant. This approximate solution
is

4
* _.7"0.,'0=[(1 + 3 co) cos 2co-- e0 cos (v+ 2@

-- cos (2,,+2@--3 eo cos (3v+2@" ]

If lhis is substituted track into (he right members,

but only in those terms in which ( is multiplied

by a trigonometric function containing the true

anomaly, v, in its argument, the resulting equn-

tions lake the form, (o 0(de):

dx b sin 2_o+S.P.T. "/
(Iv

_=x+a (29)cos 2a,+S.P.T.
..I

_63S51- 62--2

where S.P.T. denotes short-period terms of the

form sin (m_,+nw) or cos (my+m0), with m#0,

and the quantilics x, a, and b arc defined 1)y:

C:,,,-,).,
" D+ ,5

xo=_.i,,(.sc_-l) +._c k,S 4_ e°_+c7

la l e,?)+c2(_: 11

• ('1 1 .q 17 co4)a= ,]o'2e°2 \-(i--8 c02+ 8"

1 a = , (1--_b--12 Jo' eo (3co'--1) (1--co =) 15 co.,)

(30)

The coefficient, b, is O(J a) since the definition

of .c has introduced one ndditionnl power of d.

The core of the problem consists in so]ring the

equations obtained when the short-period terms

are neglected; that is,

d_x-=--b sin 2_ 1

(I F

dw o
_-xq-a cos __o/

3

(3D

wi(h (})e iniliM conditions

Xo'l

oaa ])_J ')17}101] l_:0

(a2)

THE PHASE-PLANE INTEGRAL

If l])e vm'iable, x, is climinnled from equnlions

(31) by differentialing the seeon(1 and subtracting

the firs(, the resulting equalion can be 1)u( in (he
form

de 1
. z dw-- 2 72(1+z) sin 2w (33)

where

2a d_o }

Z=-b- d_-U

. 8(I .2

(a4)
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and the initial conditions are

&a_ 500 i

2a _t c 0 (35)
z=zo= T (x0+a cos 2_0)

Separating the variables in equation (33) yMds

the phase plane irrlegral

(1 -}-z)=12 7_(k=--sin _ @ (36)z--hr

where tire conshmt of integration, k 2, is given in

lerms of the initial wdues by

k"--sin= _Oo+:_ [zo--h, (1 +z,)] (37)

Elimination or the eonshiril, /,,2,gives the phase-

plane integral the alternalive form

l+z t _(sin_ o,o-sin__) (as)
Z--gO -In l_I_ Zo-- 2

This rorm will be useful in those regions in which

the constants 7 and k turn out, to t)e complex
lr lllnbePs.

The pimse-plane integral, equation (36), is an

implicit differential equation, since z contains the
dcriwdive d_idr. The first problem is to obtain

z explicitly as a function of w. To do this,

introduce a new wtriable, w, defined by

w_=vKkLd,, __) (39)

Then the differential equation (33) becomes

dz
z (-_,=¢ it + z) (40)

and the integral, equation (36), beconles

1
z-in (l+z)=_ ,tt,_ (41)

a4 and so is d%idr, }-I is only this condiiiori that

is of any physical significance, since w occurs in

the equations only in the squared form. Conse-

quenlly, it is permissible to choose, arbitrarily,
one or the branches of z(w), as long as both

branches of u,(w) are retained. The branch of

z(w) that will be chosen here is the one for which
z/u,_l as w >0.

Equ'ttion (40) can be solved formally to give

z(w) as a Maclaurin's series:

_=_3 _,,w" (42)

where lhe eoeft]cienls, z_, satisfy the recurrence
relations

& = 1 "1

1
Z2_T

tl, -- 2

(n+l)z_=z,_l--_'_ (k÷l)&.+_z,, ,:, n>_8
t'_l fl

The first few coe_cients are

(4.3)

1 1 1 1
za=_, z4=--2-7-0, "s--432_)' _s-- 17010 " " "

The other branch of z(w) is obtainable simply by

changing the sign of each odd-numbered coefli-

dent, z,, and the only effect of such a choice

would be to interchange the two branches of
d'_Idv considered as _ function of _.

The radius of convergence or the series (42) can

be obtained by finding the singularity of z(w) that

is closest to the origin in the complex phme.

From equation (40) it is evident that singularities

occur (dz/du,=_) when z=O, w#O. Since /lie

logarithm is a multiple-valued function, equation

(41) gives 0_e desired radius of convergence, w_, as

l ° r) Fwe---. _!2iln 1i=_,2i2_r_, =--_ _- (44)

Equation (41) gives the region of convergence as:

Expanding the logarithm in a .Maclaurin's

series Nves, near the "origin" (z=0, w=0)

,2 =2 2 a 2 4 2
u' --_ -g z +_ z --g z_ . . .

so that ,Iv(a) and z(w) are both double-valued

functions, with a branch point at the origin. It.
then follows that z is a double-valued function of

--0.9993<Zo<8.53S5 (45)

Clearly, tire quantities 3' and w will be real only if

b>0 }i q-z>0 (46)

simultaneously. It can be shown that these con-

ditions are satisfie<t in the region



THE CRITICAL INCLINATION PROBLEM IN SATELLITE ORBIT THEORY 9

62°.6-([o_68°.6 (47)

for eastbound orbits. For westbound orbits, Io

shouhl be replaced by 180°--/0 throughout.

The upper limit is indel)emlent of the oblateness

parameter, J, and of tile elements of the orbit.
The lower limit is relatively insensitive to these

qunntities; for example, it becomes 62°.7 in the
extreme case o[' d--O.l, co--I, p,,=2, the nominal

wdues for a _-azing, parabolic orbit about a highly

oblale planet like Salurn.
Since these boundaries correspond to --1,_z0

_o, it is clear lhat lhe region of convergence lies

inside them (see eq. (45)). Neglecting higher

order term,_ in Jgives the region of convergence as

62 °.61 _/o_67°.4 l (48)

and both these bounds m'e rehttively insensitive

to the oblateness and orl)ital p,wameters. Thus,

for a gr'lzing, parabolic orbit about Saturn the

region of' convergence is

62°.73_fo_67°.48 (49)

This region of convergence will be ealle(l the

"ellipti<" region," since it will appe'w lhat the solu-

tion in this region can be expressed in terms of

elliptic functions. _imilarly, lhe remaining region

will be called the "trigonometric region."

The phase-plane integral, equation (36), is

shown sehemalically in figure 2 for [he e]]iptic

region. No scale is shown on the vertical axis,

since lhis depends on the oblateness parameter,

J, and _t_e orbilal parameters e0 and p. in a non-
linear fashion. Each curve represenls a fixed

wdue of k.

Actually, the initial wflues of the apsidal

position 'rod velocity carmel be assigned arbi-

trm'ily for any phase-plane curve of constant k,

since they are related to [he other parameters

lo, % and P0 through equations (30) lhrougll
(32). Thus, if COo,lo, co, and Po are specified a

priori, then k and (dw/dr)o are de/ermined, and
the orbit is represented by the corresponding curve

in the phase plane. It will be seen lalcr lhal, as
tile curve is traversed, the paramelers I and p

change. Thus, any atlemp| [oregard an m'bitrary

point as a new "initial value" would require

=1

q

FIGI=RE 2.--The Phase-plane integral.
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reeomlmting the paranmters a:o, a, and b, and hence

would lead to a new value of _I:, and lhus [o a new

curve in the phase plane.

However, the two curves wouht differ at most

by terms of 0,_]; figure 2 can stiill be regarded as

qualitatively correct, und cerlMn ['eatures of the
orbits can be deduced from it.

Thus, when k_l, ihe argmnen[ of pericenier,

co, is bounded "rod periodic, being restricted lo lhc
region given by ]sin co]_<k. Pericenter oscillates

about, the node and never reaches lhe points of
maximum declination. This is known as the

]ibralion region.

W]mn k>l, lhe apsidnl velocity, dco/dc, never

changes sign. The apsidal motion is secular,

with periodic oseillalions superimposed. It will
be seen later lhal this is lrue throughout the trig-

onometric region also. This is 1,mown as the

secular region.
YVhen k.=l, the apsi<tal molion is aperiodic.

Tile argument of pericenter approaches mono/oni-

('ally the poin[ of maximun/ decelim_tion; it wilt be

shox_m later that this approach lakes infinite time.

This limiting cease is known as the separatrix,

and the limiting points as saddle points.
The curve k 0 reduces to a single point (see

fig. 2), at wlfich co--0 or 7r (ascending or descend-

ins node), and (l_ofilv--0; that is, there is no apsidal
motion. This occurs when

xo+a-- 0

and the angle of' inclinalion '/1 whi<'h this occurs
is called lhe <'riliva! angle, denoted by I_. Ne-

gleclin_ higher powers of ,)'gives the npproxinmlion

m'tke lhe following |ransformations o[' va,'iables:

__ Z--Z 0

l+zo

z= Co-}-_'(1 t-Zo)

= W 21 it;0 2 6'-- -, (cos 2_o-eos 2_,o)
2z0 coo

co, Fdco"_
0 : - ;_,,&/,:0

(51)

Then the differential equation (33) amt lhe phase-

plane integTnl (38) become

El+i-(t-[-l)-]d_'. d_=l-t-_" (52)

,':1n d

X--_'( l+-lz0/)-lz0 In (1 @ _-) (53>

resT)eel irely.

A formal solution of equalion (.52) is given by
the series

(.54)
_-t=l

where the coefficients, _,,, satisfy the recurrence
relations

_1_] 1
(1'+])_'[+l=_ '_ - 1 + 0 *: :0_ (_]q-- ] ) _'_+' f" I_' (55)

'_> 1

The firsl few eoetliceienls are

1

11
cos'-' L-_g
I__ 63 . 30 .j

(50)

and again lhis quantity is relatively insensilive
[o the orbital and oblateness parameters. Thus,

for _azing, pm'abolic orbils about. Earth 'm<l

Saturn, the values are 63°.437 and 63°.576,

respccetively.

The series expansion (eq. (42)) is one represenla-

lion of &o,.qlv as a funcetion of" co, and its region of

convergence has been determined, namely the

elliplic region given by equation (45) or (48).
Jt is now desired to oblain a solution outside the

elliptic region. To do this it is convenient to

1 1

_._=3zo+2zg

1 5 5

42° 62u 2 S20 a

Again the radius o1" convergence is obtained by

finding the singularity in the complex plane
(,li:/dX=+) nearest tile origin. Equation (52)

gives
-- Z 0

"{-- "{'_= 1+ z0

and then equation (53) gives

X=,X.,._---l-[ -1 In (1-l-zo)
_0
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and there are two cases, depending on the sign

or (1 +z0).
Thus, the radius of convergence, k_, is

that., for tile limiting case of grazing, paral)olic

orbits,
eo= 1

Xc=l--l+lhl(l E-zo) ifl+zo>0 l_
2 _T-" 2 /

il 1 -l- zo<O J

(56)

In particular,

X,=0 if z0=0 "1_
(57)/X_= _o if Zo=--i

Note that, in the elliptic region, where 14-,zo>O,

the radius of convergence, ),_, can be put in the

form

Os)
Xo= 2zo

Next it will be shown that the two regions of

convergence, elliptic and trigonometric, do over-

lap and do cover ,dl possible eases. This will be

done by obtaining simplified expressions exhibit-

ing the depemlence of the various parameters 7,

k, X,, etc., on the oblateness parameter, or, and

the orbital parameters, o_o,co, and p,, and l>y giving

typical numerical examples based on exqct cal-
culations.

Throughout, the oblateness parame|er, J, will

be subjected to the restriction

J<o.25

When reference is made to Earth or Saturn, the

calculations are based on the nominal values

po-= 2

2eo/po = 1

and, for satellite orbits,

e0<l

q0>l

2Co< 2eo<_ 1
Po l+eo"-

The analysis will be carried out only for cast-

bound orbits, 0°_<Io°_<90 ° . All the results are
valid for westbound orbits when I0 is replaced by

1S0 ° 10 t|woughout.
Consider first the parameter, % which plays

the role of a scale factor:

Taking eos 2 I0=:l/5 gives the approximation

[yI=2.75 (2eo'_ --
',.Po-/_'J (59)

Actual values are shoxxm ill figure 3 for _'azing,

parabolic orbits. For comparison, equalion (59)

gives

f0.11 for Earth
l ,l= "5

_.0.87 for Naturn

f0.0016 for Earth
J=

I 0.1 for Saturn
k.

To obtain bounds for certain quantities, it is con-
venient to extend the class of satellite orbits to

include escape orbits. ]n p:trlicular, the pavan>

etev 2c,/po will occur frequently. Since

Thus, in the elliptic region, [7] is essentially inde-

pendent of the inclination angle, so that it is, in

t'acL a scale factor.
Next, consider the parameter, k, which will

subsequently be identified as the modulus of

ee,'tain elliptic functions. Setting co=coo 0 or

_- in equation (30) (fig. 2 shows this is permissible

without any loss of generality) gives

po= q:,(l +e0)

where e0 is the eceenlricity, f. the semilalus

rectum, and qo tim pericenler distance, it is clear Since wo is essentially a ftmclion of the inclination
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angle only, equation (59) gives the functional
form

k= --p° f(Io) (Go)
£o%'J"

Numerical vahles are presented in figure 4, where,

for convenience, tile reciprocal, 1/1_', is plotted in

the secular region.

The series expansion (42) was shown to have
the radius of convergence_ w_=_r.9 _- Hence, by

the Cauchy-Iladanmrd theorem (ref. 9, pp. 154-5),

l=lim _!_
_-Uc n

Thus (rei'. 9, p. 91), for any e,

for all n_N(e), tlelice

z/tWo!_ , , ,V'

and the speed of convergence is determined

essentially by the wdue of the convergence pa-

rameter I'wofw_I. This parameter depends essen-

tially on the inclination angle. Numerical values

are presented in figure 5, which shows clearly the

insensitivity to lhe oblateness paranieter, J.

Similarly, for the trigonometric re, on the
natural convergence parameter is XIX_ By equa-

tion (56), the radius of convergence, X_, is cssen-

tiMly a function of inclination angle only, while.

by equation (51)

Equations (31) for xo and a then give the propor-
tionality, for fixed but arbitrary Io/

io ° 2

for the dependence on 3", e0, and Po- Numerical
values for the re,on outside the elliptic, region

are presented in figure 6, with scales at left and

right for Earth and Saturn, respectively. Thus,
outside the elliptic region,

X[ {0.0024 for Ea,'th l (62)_]-< 0.15for Salurn j

and the speed of convergence or the series (54)

is quite satisfact.ory.
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It remains to be shown that the elliptic and

trigonometric regions do indeed overlap. Con-
sider, first, the trigonometric convergence factor

at. the boundary of the elliptic region. By

equations (51)and (5S)

lt_@-- We _

El= _ (63)

AL the boundary, '"• _o'=47r and equation (51)

then gives

<_:=0.6J \l)u] "
(64)

the second inequality following fi'om equation [59).

Thus the trigononletrie series does converge at
the boundary of the elliptic region.

Conversdy, the boundary of the trigonometric

region can be obtained from equation (63) by
inserting m and w0 from equation (39):

X 72(sin 2 o_0-8in 2 co)I
Ix I l o.,,,)I

(65)

Taking the worst case, wo=r/2, c0=0 gives

'X< 1
_--l_ 2_- 1 (66)

Thus, the convergence boundary for the trigono-
metric series is k2=2, and here the elliptic con-

vergence factor is, by equations (39) and (59),

-- -- \ .-/)0 /"_

and the overlapping of the convergence regions
has been estatflished.

It is of interest to determine the speeds of

convergence in that region common to both the

elliptic and trigonometric regions, and to deter-

mine the point al_ which the speeds are equal.

Equations (39) and (66) _ve

--= -- _ 0_7)' l [ _:T >F ,,

Equation (59) then gives

t.__k=2_'_ 1.3 Po (68)
M v,g2eo
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This gives, in the worst ease of gTazing, parabolic

orbits, for Earth, Saturn, and the extreme case
J=0.25,

k--3.'32, 1.S, 1.62 "_

_X __ <0.10, 0.45, 0.62 (69)
iWc -

rcspectiwqy, and the dependence on J, e(,, P0 is

given approxim,_tely by tile equation

_ ,_/ (re)

(This approximation gives 0.12, 0.4(;, 0.63 in eq.

(69)).

Thus, in the case of the Earth, one can always

choose a series that converges nmre rapidly than

and this worsl case occurs only in the common

region. In the libration :rod purely trigonometric

regions the corresponding, dominating series are

k (o< >oy
and

n=1 ", Po / J

Earth

respectively; hence, ruthless trmlea, tion of tlle

series is justified for Earth satellite orbits, espe-

cially for those of moderate eccentricity[

A single convergence parameter, v, can be de-
fined as follows:

/!v,l '), )v=minimum [' =!,',i<l _

in the overlapping re_on, while u is defined to be

Jw/tt,_! or iX/X_' in the purely elliptic or purely
trigonometric region, respectively. Then the

geom el tie series
¢.

is a dominant; for all the series. This "optimum
convergence parameter," v, is shown in figure 7,

for the overlapping region.

It. shouht be emplmsized tlmt the quantities

_,i,_7 and _/J play distinct significant roles. As

will be seen (e.g., eq. ($9)), the width of the libra-

tion region (range of inelimdion angle) is pro-

portional to _'J, and this regio:_ disappears as J

approaches zero. Also, the secular velocity of

pericenter vanishes with or. Ilowever, tile speed of

convergence of the series in the overlapping region
3

is proportimml to _J, by equ.lion (70), and this

_oldrn

,0__l ",08

/

o _ , I,V , , I

/'\

\
\

Earth

I

65 5625 63.0 63.5 640 64.5 650

Z o , de9

FTC4-eE 7. - Oplimum convorgmme factor.

.5

.4

I I , I I 0

66.0 665 67.0 67.5

Saturn .3

\
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(letermines lhc number of terms of" the series

required for a specified accuracy.

The series representalions of lhe phase-plane
integral, equalions (42) and (54), are of the form

d_
_;-=series in w

It would be more convenient to express the reeipro-
etd, dv/dco, in this form. This can easily be (lone.

For the elliptic region, equations (34) and (40)
yiehl

dv 2a ('l dZ__l')
dco-- T _ u, dw /

SOLUTION OF THE APSIDAL EQUATIONS IN THE

ELLIPTIC REGION

In or(ter to simplify the analysis, the initial

position of pericenter will be taken at the ascending
node, w0=0. Figure 2 shows that this entails no

loss or generality, except in the portion of the

libration region centered at the descending node,

co0=_'. The results to be obtained can be applied

to this case if o) and coo are simply replaced by
w--z- and wo _-, respectively.

To insure that both branches of the phase-plane
integral are retained, it is sufficient to define the

sign of the parameter, % of equation (34), by

The transformation equations (51) then yield, for
the trigonometric region,

/
y=2a.i/7 sign coo' (74)

E d_" -I(]codr=coo'I (1•@Zo) [/_-- zo.j

Inserting the series expansions for z and i" gives the
desired equations

dco---bdr_t'2__"fl2a[l(kzw_,,st_=0n 2 (1, -_- 1) Zn t-lWn-- 1_ }co) (71 )

for the elliptic region, and

(72)

for the trigonometric region.

In the following sections these equ,_tions will be

solved, yielding the implicit solution

that is, the branches are identified simply by the
sign of coo' (see fig. 2).

It, is now convenient to introduce a new inde-

pendent variable, _b, and a new (lependent variabh_,
O, defined by

¢=_, ,7_ sign wo'
(75)Jsin co=k sn 0

where sn 0=sn(0, k) is the Jacot)ian elliptic
function of modulus, k (which will not be written

explicitly). Standard terminology for elliptic

functions 'rod integrals is used throughout (see,

e.g., ref. 10). Equations (71), (74), and (75) now
yield

cos co=tl_ _ "]

idco .

d0-=t: cn 0 (76)

w=kv en 0

v= _,(co) and the differenti,fl equation

This will then be inverted to obtain

_,=co(_.,)

Equation (31) then yiehts

(lco
x=_--a cos 2co (73)

without any additional integration. It is then

simply an exercise in algebra to obtain (he angular

momentum, semilatus rectum, and inclination

angle as functions of the true anonmly, v.

de , 1
@=J--3, k;,en 0+____ (n+l)z,+l(kv en 0)" (77)

IntegTating term-by-term _ves

n=2

where

L,(o)=, (k cn O,)"dO_, n_> 1 (79)

These can be evaluated by means of the recurrence

relations of reference 10, pages 192d93; the
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fit'st few are

L(O) are sin (ksn 0)

fa(O)=Z(O)+(_.+_: e- 1)

'u'e siu (k sn 0) J

JI
4-_ k sn Od_,O

(80)

where Z(O) is the Jacobian zela function, and
E, K are the complete elliptic integrals of the
fit'st and second kind.

Equation (7S) may be regarded as defining 0
as a function of .two independent varial)les ¢J
and v. Differentiating with respect to T gives

b0(¢ Y)=Z I,(0)--_ n (n+l)z, +I"y"-'L,(O)
i)y w n = 2 '

The series converges in the elliptic region, and
z/w is bounded. Itence, 0 is an analytic function
of "r throughout the elliptic region attd can be
expanded in a convergent Machmrin series:

0 ¢+_ d,,(C4V _ (81)

where

I V_,,e (¢.v) 7 (82)
J" (¢) =rT_L a-r" J_=o

The first few are

& (¢)=:_ L (¢)

l

Ja(¢)=--_ k sn ¢(d,¢)L2(¢,)

1 "2" 2

+ 108 k (,en _k)L (¢)

361it'(on ¢)/_(¢) +1352 Ia(¢)

(83)

Titus the argument of pericenter, _, is expressed
as an explicit function of v, the true ,momaly, by
equations (74), (75), and (81). The remaining
variables to be determined are q, the pericenler
distance, p, the senfilatus rectum, and I, the

inclination angle, all of which are obtainable,
ultimately, from equation (73):

17
O"

dw

x=_--a cos 2,_ (73)

Combining tiffs with equations (34), (75), and (76)

gtves

b (w'-w0 =)]a:-xo=_ [Z--Zo -1 (84)

and it may be recalled that

'w=k7 cn 0

Wo= k'y (76)

and z is a power series in w (eq. (42)). Equations
(30) /hen give

_=_ [Z--Zo--l (w'--wo=)] (85)

w]_ero

t_= b (1-e0") (l -a,'o') (86)

2ado" _[152 c°2-- 1) 4-- 57c°=+51 co4

Note that fl depends only on the inclinalion angle,
[0, and is indel)endenl of the l)lanet (J) 'rod of all
other orbital paranteters. Its gTaph is shown in
figure 8, where it is called the inclimltion scale
factor. The remaining variat)les are expressible
in terms of _ by equations (12) and (15):

p
Pericen ter dis t ante : q= 1 + eo

Semilatus rectmn : p=-i p"+$

lnclin'_tion angle: cos e I=eos-" Iu(1 +_)

l (87)

J
Tlte series presented in this and the previous

section constitute the complete analytic solution
or the problem in the elliptic region. The

,geometrical interpretation will now be given for
the three cases

Libration region: 0_<k_l

Separatrix : k= 1

Secular region: k_l

In the interest of clarity and simplicity only tiw
dominant lerms of the series will be retained; as
was remarked earlier, this is certainly justified in
the most important ease of earlh sa.tellites.
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TtIE LIBRATION REGION, 0 __<./_ _._ 1

Figure 4 shows that [ is esseniially equal to the
critical value throughout the libralion region.
IIence, the parameters a, b, fl, 1' can be approxi-
mated by their values at /o=arc tan 2, and if
_oo'>_0 (fig. 2 shows that this can be done without
loss or gener.liW) , lhen tomcat ion of the series
of the preceding section gives

,_=6+_ 1"ares in (,{:sn 6)

sin _o=/,: sn 0

d,lv=Ic ,i"2bcn 0

[= [_--bA[ en 0

df l a[_ siu 2co
(h,--2

q--ffoq-t:Aff(1 --cn 0)

dq 1 ,
--7_Aqx:2b sin 2_

(88)

wilh the following nolalion and npproximMions:

,1 (13L='/rc l,m 2 q-qo2(l+eo)2 1_0

--67eo_
"_ 30q.(l + eo)

15qoa(1-}-e0)a

eo2'_

(s.q)

The dependence of the critical angle, I_, on tl:e
obl'tieness and orbital parnmeters is shown
explicitly. For satellite orbits, 0_<e0<l, and, for
grazing orbits (q0= 1) :

63°.437_</'__< 63%447 for Earth _1
k

63°.573 _<f__< 64 °. 180 for Saturn f

The elliplie functions sn and cn are periodic;
they are qualilalively simi'_m• to the Árigonometric
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functions sine and cosine, having unit ampli(u(le

(de_fiation fl'om mean value). Itowever, the
period is 4K(k); when /'=0, K=W'2, 'rod as k

increases so does IQ as k_l, K-_¢o logarithmically

(see ref. 10).

Thus w, I, and q are ,all periodic functions of

the true anomaly, v, with the same period P:

P --3_Kq¢_(I +_e°)_ orbital revolutions (91)
_reoJ_ 6J

The minimum value occurs when k--0, qu--1,
e o _ 1/2 :

103 _ [ (;40,003 revolulions for EarthP--> J(_ l. 1,309 revolutions for Sa(urn

(92)

The orbital period of such a satellite is 4 hours

for Earth and 12 hem's for Saturn, giving

p> ]'290 years for Earth}-- _ 1 ..q years for Saturn (93)

The quantilies _1- and aq are the maximum

possitfle widths of the oscillations in inclination

angle, I, an<l perieenter distance, q. The modulus,
k, is simply a scale factor relating actual {omaxi-

mum possible wi(l(hs. The amplitud(,, A % <>fthe

oscillation in the argument of perieenter, _, is

Ao.,= are sin k

IIenee, perieenter oscillates about the node and

never reaches the points of maximum declination,
north or south.

Since the quantities dc_/<h,, I, nml q are idenlical

functions of _ (and llenee of _o), except for scale

and origin, (he phase-plane plot or figure 2

represents all three, (he positive direction of the

axis of ordinates being' upward for dw/dv and down-

ward for /and q. At the origin d%/dv--O, [--I_=

/_, and q--q_=qoq k3q. Writing

r_=ffR

where rp is the m, tual perieenter distance, and R

is the equatorial radius or the phmet, gives the

"half-width" of the libr,iion region:

i, ,I

2e,,(G]" P, _ (94)

AG,-- l--_e_ 15 J

19

Note (hat A[ does not depend on (he actual size

of either the i)hmet or the orbit, but only on (he

size of the orbit, rela(ive to (he planet (qo); on the

other hand, Arp depends only on (he size of the

planet (R). Of course, they both depend on.(he

orbital eccentricity in the same way. Xumerical
values for Earth and Saturn are

- 2e0 F5z.liIorEarth'l

44' ) (%)

2% 1"42 kin, Eu'th
AG _ _ 4 R (9O)

' 1 f e0k3000 kin, ,_.tur. d

The maximmn rates of chan-'e are

[2"/re'volu( ion, Earth
:[. 17'/revolution, Sat urn

._ 0".0014,'revohgion, Earth
1: [. 5".4/'revolut ion, Sa( urn

1O era/revolution, Earth
r+,: (. 5 km/revolulion, Gaturn

(97)

TIIE SEPARATRIX

When the modulus, k, is equal to unity, the

elliptic functions become hyl)erbolic fum.tions
(ref. 10):

sn O=(anh 0 "_r (9._)
en 0 d+_O=se<'b _ d

and equations (SS) of (he preee<ling see(ion become

¢=v_)b

O=¢q -1 3' are sin (tanh ¢)

sin ¢o=tanh O, cos _o----seeh 0

_=_'2b cos o.,

[--I,--AI cos

d[ 1 A[_2--b sin 2_
dv '2

q:qo+Aq(1--cos w)

dq 1 Aq :o_>sin 2w
dv 2

(90)
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and, of course, tile parameters are still given by

equations (89). The equations were derived

under the assumptions that we=O, O_o'>_0. If

We=r, replace z by _--1r; if O_o'<0, change the

signs of dw/de and %

The periodic character of the motion has dis-

appeared, or, stated differently, the period has
become infinite. The motion is aperiodic, or

asymptolie. For hrge wdues of 0 the hyperbolic
functions can be approximated by exponential
functions:

sin w--tanh 0_l--2e 2o

cos a_--sech 0_2e -°

The limiting values, as 0 approaches infinity, are

rr .

_o_= 2 sign (_oo') /

I==I_

I
q,--qoWAq •

(100)

The lime required for wIw=, I--I=, or q--q=

to decay by the factor 1/2 is

In 2

The number of orbitM revolutions in this "decay
time" is

N= 0'7=5.5 q°3(l+e°)a (101)
27r(2b 8eoJs'J

and this is a minimum when e0= 1/2, ff0=l. Itenee,

N_>_ je72,000rev°luti°nsf°rEarth } (102)
L 146 revolutions for Nalurn

Recalling that the orbital period of such a satellite

is 4 and 12 hours ['or Earth and .qaturn, respee-

lively, gives the decay time

, :> f 33 years f°r Earth "_ (103)

[.0.2 year for SaturnJ

Every case (,_0=0, r; w0'>0, <0) can be

described in general terms as follows. Ir the

orbital plane is initially on the equatorial side

of the critical position, the apsidal motion is

direct, otherwise retro_'ade. In every ease pert-

center as3qnptotically approaches the point of

Equoforial case N

Eostbound West bound

S: Satellite

P: Perigee

Polar case

Westbound
P

Fief-hE 9. Ilel-ttive dirt,ctions or molten of satellite and

perigee.

maximum declination. This is shown schemati-

cally in figure 9.

THE TRANSITION REGION, k_ l

The region under consideration here is that

portion of the elliptic region (outside the separa-

trix) in which the elliptic series eonverge more
rapidly than the trigonometric ones. The transi-

tion from aperiodic motion to secular motion

takes t)la(_e in this region, with a concomitant

decrease in the amplitudes of the long-period
oseilhttions.

Equation (6S) defines the transition region:

k>l "_

kS k < _1.,3 p_[ (104)

The specification of the region in ter,ns of in-

clination _ngle will be _ven later.

The elliptic functions change their character

when the modulus, k, is oTeater than unity, but

their original character can be restored by means

of the reciprocal modulus transformaiion (ref. 10,

eq. 162.01). Thus, throughout this section the

nmdulus of all elliptic functions and integrals wilI
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be the reeipro(.al modulus, kt:

Equations (74) to (83) now become

for the worst case of _'azing, parabolic orbits.

Ilenee, lhe truncated series

with

_=v_:2b sign (zo')

_--am kO=are sin sn k0

sin w----sn kO

cos _o=en leo

u,-- k'rdl_ kt_

(105) z- w+_ w 2 (110)

Jl(#=_ Ii(_)

J: (¢,)= _ h-(&,z_)It (_)-_ L(_)

,L(+)=-_4 s,, k+(c,, k#L_(+)

1 k_(d_?a#L(¢4+ios

find

1 k(d_ k# L(# 2

(lO6)

. (1o7)

I,, (_) =k (bh, 1,,)",1¢,, (lOS)

The recurrence relations of reference 10, page 194,

give

I, (# =am t_k "]

)E

L(¢D t.Z(k# +F. z'_ (109)

(;) 1Ig#= k _- am k_-I-_sn k_ en k_

Equations (85) to (87) for perieenter distance,

semilatus rectum, and inclination angle remain

unchanged.

Equations (69) and (106) give the bounds

0.36 for Enrlh

I<<i_Yi< (.1.60 re,' Sa(un

is in error by less than 1 percent for Earth and 17

percent for Saturn, and the error decreases with

eecenh'icity. This approximation will be used

throughout this section; also the parameters a, b,

% fl will 1)e approximated t)y their values at [0=
ave tall 2:

67 j()2¢02
a = 300

v=-2., ,,_d p,, slgn (_,o')

(111)

which are consistent in accuracy with equalion

(1 t0).

The initial inclination angle, 1o, can now be ex-

pressed in terms of k as follows. Equations (30)

to (33), with (111), give

4z 0

5 cos _ [o-- 1=-- 6-7

and this can be transformed, by equations (106)

and (110), into

Io nrc ta,, 2-_-O°.S55ky(1+_ k'y) (112)

Ilence the width of this region, in terms of the

range of permissible values of [0, is

A/o= 1°.71 k'y (113)

where k is the root of eqtmtion (68).

By equation (70),

_Io,._, / eft (114)J qo=(1+ eo)2

The range, A/0, is plotted versus the eccentricity,

e0, in figure 10, for grazing orbits (q0--1). The

wdues in the figure can be scaled 1)y dividing l)y

qo 2/3.

it is now convenienL lo regard Or, k, e0, and qo

as the primary parameters, since then L)can easily
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,2 ,3 .4 ,5 .6 .7 .8 ,9 [.0

e 0

FI{;TmE 10.- -Width of tran,Mtion region versus ceeenl ric[ty

be obtained from eqwdion (112). The well-known

properties of the elliptic functions ean then be used
to express the so]ution in the following (approxi-
mate) form:

fl 1:,)

_-G,_b sign (%')

,,
_r/r

_=ffK, 0-{-_

~ I ...
o _ 3 ya, m k_'

_4a.-r___fi7(1 --dnlcO)[l.. --_ kv(1 +d,_Ico)-_

z-g+7

q-- qo+_7

_7=- q0_(1--_)

where the tilde (_) is used to denote periodic con>
ponenls, and the ellipliv integral K_--K(k,) is
written with a subscript as a remin<M' that the
modulus is k_.

The common period of g, _7,and _7is

/qKl

*P--rr_,-%b(1 +_//_-Z'v_orbital revohllions (116)

and the secular velocity o1 perieenter is

, sign COo_

c%_-- 2P (] 17)

revolutions per orbital revolution of lhe satellile.
At the separatrix p=oo, _o',o_--0, and the

motion is aperiodic.. As k increases, P decreases
and o/.o increases monotonically. Their values
at the boundary of the transition region are shown
in table I for Earth and ,qaturn, for gTazing orbits

(q,,- ]).
The elliptic funelions a_7 u and (In u are shown

in figures 11 an(l 12 in normalized form. For
small values of /he modulus, I'_, they can be rep-
resented 1)3, the approximations
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%

am u_- g k? sin -I,;_

_..1 (l--cos 7r_/

(11 s)

As the modulus, /_:_, increases, the curves arc

progressively distorted; near the separatrix the

asymptotic approximations are

Jl--tin u_l--seel_ u

(119)

Since dga u is an odd function and dn u is an even

function, both with period 2K, only half a period

is shown in the figures; also tile approximations

(119) are only valid for lul__<[(_.
Figure 11 or equations (118) and (119) can be

used directly to obtain the amplitude of the

oscillatory functions _o and _. For example, in

the worst ease of parabolic orbits, at the transition

boundary

m_x I_l= L2°2, _,tu,.,, j 020)

and

_ 0°.024, Eal'th'_
max [_[= k 0e'42' S_mn'nJ (12_)

In other words, at the transition boundary the

secular terms arc overwhelming, and

w= w2o_r (122)

The in('lination angle and perieenter distance

can be studied by means of equations (115),

(llS), (119), figure 12, and table I. Their

oscillatory components, 7 and _, like _o, decrease

monotonically with kl. Near the transition hound-

ary they ran be represented by tbe approx-
in_,ttions

_.1 /l--cos -_ -1,=_ k,_, (1_1 ,.y)/\ rd'0"i£,/

~ 1
I=--_ ( (123)

AS,= --rp, o_

Figures 13 through 16 show the values at the
transition boundary, for gTazing orbits, as a

I.O

.8

.6

_[_

.4

.2

%

= -

.! P ,5 .4 .5 .6 .7 ,8 ,9 1,0

FI(aI-RE lI,--Thc oscillaIory part of am u.
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i

k I : .995

k I = .6

k I =0

I i 1

0 ,I ,2 ,5 .4 .5 .6 .,7 ._, ,9

u /Ki

FIC, VRE 12.- The elliptic function dn u.

1

1.0

function of eeeentricily. For comparison, the

values at the separatrix are also shown (see eqs.
(94) to (96)).

Fimdlv the approximation

de
de= : -_')bbsign _oo'dl_kO (124)

shows that do_/dr, 7, and q exhibit the same behavior

as functions of 0, and again the phase-plane

diagram of figure 2 represents all three functions

with suitable choice of origin and scale.

SOLUTION OF THE APSIDAL EQUATIONS IN THE

TRIGONOMETRIC REGION

The phase-plane integral in the trigonometric

region is given by equations (72), which can be put
in the form

"5

([t'1 +5-2, (l+zo)O_-t l)f,,+y
COO / -_-- 71=1 "

(125)
--2(l

X= sin 2
c°u ,,/

where tlle initial position of perieenter has been

taken at the node: ¢oo=0. The powers of X can

be expressed as trigonometric polynomials, and

then dc/dw takes the form of a Fourier cosine series:

,,tv @
_oo --=/__ .1_- cos 2kco (126)

d_ k =0

The recurrence relations for the _',_ (eqs. (55))

lead to the following equ,dions for the :lk:

Ao=l_(b+2owo') £ (2n) B,, }

,,=_ ,, (2,.oo')_"
(1'2_7)

o ( 2,, n,,
A_=2(--1)_'(b+2aw°') ,,_=_._n, --k) (2wo') 2"

where

B°=bf'----, +l } (128)n -- 2a_o,,' " BkB,__
,,, R,,+b(b'-2¢,,,o') .___%n+--g2-__i"

The first few are

Bl=l

3

5 b2+22 ba_0,+ (2r_o,o,) _B_=_

B4 35 ._ . 35- b'+; % , , 65o uoo -t--_ b('t_oo')_+(2_tO_o;) ag
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]7xcl-Rs 13.--Variation o[ inclin_tion anglo in the t rnn,_ition region for Earth.
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fIGURE 14.--Variatiolt of perigee distance in ihl_ h'ansilion region for Earth,
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Equation (126) can t)e integrated to give e as a
Fourier s._ries in co, which in turn can be inverted

to give co as a Fourier series in _ (ref. 7, appendix

E, eqs. (E25)):

w=co/v+_ w,, sin 21_w+'v (129)
ft=l

where the secular velo<'ity is

_, _0' (130)

and the coefficients of tile harmonics are infinile

series, the leading terms being

COl=

0)2 =

(,.03 _

1 *'ll Al.12 1 A1 a •
2Ao Ao -_ } 16.1o a''"

1 *12 1 ='1i_
4Ao _-4.1o 2''"

1 Aa 3.11.12 3 ill a
6.'1o ÷S Ao 2 16_1o a''"

(131)

The variable .r can be obtained from equation (31)

d3"
--= b sin 2co (31)
d v

by expanding sin 2_ in a Fourier series in v:

where

sin 2w=_ S,, sill 2nw.'v (132)

1
&= co,+5 _,= . . .

&=_:_+col_2+ 1 cod• • •
ti

S'* =1-}-, c02-3co12.-. 1

Io 1

I (133)

Subsliluting in equation (31) and integrating gives

X--Xo=--b 5 S,, (l--cos 2nw,'v)
7_=I 21_c%

and lhen equation (30) gives _:

_=_ G(1--eos 2nee/v) (134)
71=1

where

,i,,%X:_CoL17(1-Co_)S,,
24nws'

(135)

and then |lie inclination angle aim

distance are given by equation ($7)

t
cos _ I=cos 2 1o(1 -_ _)

periee n ter

(130)

These resulls can lie summarized by retaining,

for simplicity, only terms through the second
order in J:

WIlPI'O

%

co=w,,'V+w I sill ') ' [
.co,> _'+co2 sill 4co/t' (t37)

f_=_1 (1 --COS 2co/v) -_-& (1 --cos 4coo'v)

col=co o' [1--2

b+2acoo' [1 +4 b+aco,,'-]co' (2coo')_ t2coo')'-'J

(b+2acoo') (bq-4acoo')
W2_ 4(2coo,)4

*l='J02('02(3¢02--1)(l'--d02) [1@224600

b + 2acoo' 1
_._.j (138)

b i 2acoo'-]
0coo'?_1

jo2eo2(3eo 2-1) (1 --Co 2)(b t 2_tcoo')
24(2coo') 3

(139)

Thus the apsidal molion consists of a secular

term and long-period terms, while the inclination

angle and perieenier distance contain onl X long-

period terms. Ttie secular velocity, w/, is n
monotonic fulwtion of initial in.'linalion angle,

Io, reaching a maximum for equatorial orbits
and a minimunl for polar orbits:

2,1
w/_ 2, equatorial

Po

,1
-- ---- polar

col '_' 2p02_

Thus, for equatorial orbits,

f 1o. 15/revolution, Earth
a/s" _<

72°/revolution, Saturn
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and the corresponding period of the long-period
oscillations is

; 156 orbital revolutions, Earth
P= 3

(2.5 orbital revolutions, Saturn

Ii may also be noted th,tt the secular velocity of

pericenter is essentially independent of the orbital
eccentricity, et,, while the amplitudes of all the

long-period oscillations eonlain e02 as a factor.
There are certain values of I0 that lead to

simple exact solutions, namely those for which
the coefficient w,, or _,_ vanishes.

First, if the inclim_fion angle, I0, has either
of the wdues

Iu= ( 62°'6 (140)

..f

72°.4

then b_2aw0' 0 and the exact solution is

Cd_ ('O0"_' 1

jo'eo2(3co 2- ] ) (1 --c,, 2) I((141)

=-- " 24wo'
(1 _ C 0 S 2_0o'r) J

ttmt is, the apsidal motion is purely secular.

On the other hand, if [0 has either of the wdues

( 0° }I0= _. o _ (142)
o4 .i

theu all the G vanish, so that I and q are constant.

In this ease the apsidal equations (31) become

doa

_=Xo+a cos 2_

and the exvct solution is

tan --_ _tan _ "

/=Io (143)

q= qo

This is essentially the same as the equation relating
the true and eccentric anomalies in Keplerian

motion (ref. 11, pp. 62 63). The series solution

for o0 is (129), where now the coefficients are, in

closed form,

o_' -- _/xo2 -a 2 ( 144 )

It, may be noted that the phase-plane diqgram of

figure 2 cannot represent all three variables de/&,,
/, and q in the trigonometric region, since their

long-period components vanish at different in-

clination angles (eqs. (140) and (142)).

The amplitudes of the long-period perturbations

decrease very rapidly with distance from the

transition boundary. Thus, for example, when

lo-70 ° ,

1".7, Earth
[[--L"I<- 1_1'.8, Satm'n

f0.30 kin, Earth
Arp< k 165 kin, Saturn

< f 13", Earth
c01

-- 1,. 14', Saturn

DISCUSSION

A direct, amdytie comparison of the various
treatments of the critical inclination problem is

ahnost impossible because of the multiplicity of

notations, approximations, and starting points.

No one theory has a monopoly on either simplicity
or accuracy. The present theory has the virtue of

using an intermediate orbit tim! eliminates the
need of considering the variations in the eccentric-

it3 , but the price to be paid is the introduction of
infinite series rather than closed-form solutions.

One novel feature of the present theory is the

emergence of certain inclination angles that elimi-

nate eompleh,ly lhc long-period oscillations either

in the apsidal motion or in the inclitmtion angle

and pericenter dislance. The other is that the

convergence of the infinite series is rigorously

proved, so thai precise error estimates are .wailabh,.

CONCLUDING REMARKS

The present theor37 presents solutions of the

satellite orbit problem that do not exhibit singu-
larities at the critical inclimttion angle. Series

representations are obtained, their re_ons o["
convergence are exhibited, and quantitative meas-

ures of their speeds of convergence are provided

for use in numerical computations.

Essenti:,lly similar results have been obtained

by several authors. However, lhe dev(dopment

of new methods of solving old prol)lems has al-

ways played an important role in the growth of

any scien('e. The present method can be used to
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reduce any axially symmetric problem to two

<limensions. Thus it can be applied, for example,
to study the effect of the earth's magnetic fiehl on

the orbit of an electrically charged satellite, or to

study the long-period and secular effects of the

sun and moon on the orbits of near earth
satellites.

AMES ]]{I_]SEARCII CENTER

_'_ATIO__AL AEROWAVTICS AND SPACE ADMINISTRA.TION"

5[OFFETT ]?IELD, CALIF., .][(ll.I 1._, 1962.
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TABLE I.-PARAMETER,q AT TIIE BOUNDARY OF TIIE TRANSITION REGION

(n) Earth

Eecent riciiy

0

00l
01
I

25
5
75

0
• 0391
.0846
• 176
• 227
• 267
• 289
• 303

Ki

1. 571
1. 57|
I. 574
1. 583
1. 592
1. 600
1. 605
1. 609

l'Yl

000220
00218
0200
0440
0733
0943
110

-,,21)

0
104 X 10 'v
IO1XIO 6
785X I0
134 X 10 5
155X 10 -_
146)<10 -5
131X 10 -s

Period (revohi-
tions)

co

2)110 _
4X 10 _
1 X 10 _
8X 104
8)4 10 i
9_410 _
1XIO .;

Se('lllar molioii

of tierieenter
per revolut ion

0 ¢¢

0". 34
1".6
5". 9
8". 0
8". 0
7 _'. 1
6". 1

(b) Saturn

0 0 0 0
001
01
1
25
5
75

078-t
167
339
429
495
532
552

I. 571
1. 573
1. 582
1. 619
1. 652
1. 683
I. 70,t
I. 717

00174
0171
145
348
580
745
870

515X 10
501/, 10-4
388)< 10 a
661 ;*( 10
800 X 10 -_
754X 10 _
676 ;'_ 1 O a

oo

7600
1600

400
270
2.10
270
300

0 ¢

1 '..1
6', 6

27'
40'
-15'
40'

36'
I
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